Painting

Task 30 Navigation

Task 30 –

OC4 Phase II:
DeepCwind semisubmersible

Floating offshore wind turbines are a good test for aero-hydro-servo-elastic codes because they incorporate features not present in conventional fixed-bottom offshore support structures:

Numerous floating-platform concepts are possible for offshore wind turbines, including spar-buoys, tension leg platforms, and barges, and hybrid concepts of these. In OC3 Phase IV, the spar-buoy concept called “Hywind,” developed by Statoil of Norway, was imitated. This concept was chosen because of its simplicity in design, suitability to modeling, and relevance to future commercial projects. In addition, an actual prototype exists. Statoil graciously supplied detailed platform and mooring system data for a conceptual version of the Hywind platform that was developed to support a 5-MW wind turbine model. The primarily ballast-stablized Hywind turbine established a baseline for floating simulation codes but did not test the validity of these codes under conditions that match intended operating conditions for many industry floating concepts. Buoyancy and mooring-line-stablized systems need to be assessed under the same conditions that the spar was in Phase IV of OC3.

This OC4 Phase II conducts a similar comparison of coupled simulation codes using semisubmersible floating substructure in place of a spar buoy.

For OC4, a semisubmersible design developed for the DeepCwind project is used. DeepCwind is a U.S.-based project aimed at generating field-test data for use in validating floating offshore wind turbine modeling tools.

Analyzing the DeepCwind semisubmersible design in the OC4 project creates the opportunity for a follow-on project related to validation of the simulated dynamics of the system by comparison to the wave-tank data. The present focus of OC4, however, is verification of modeling tools by comparing results of simulated responses between various tools.

flags